Iterative Approximation of Empirical Grey-Level Distributions for Precise Segmentation of Multimodal Images
نویسندگان
چکیده
A new algorithm for segmenting a multimodal grey-scale image is proposed. The image is described as a sample of a joint Gibbs random field of region labels and grey levels. To initialize the model, a mixed multimodal empirical grey-level distribution is approximated with linear combinations of Gaussians, one combination per region. Bayesian decisions involving expectation maximization and genetic optimization techniques are used to sequentially estimate and refine parameters of the model, including the number of Gaussians for each region. The final estimates are more accurate than with conventional normal mixture models and result in more adequate region borders in the image. Experiments show that the proposed technique segments complex multimodal medical images of different types more accurately than several other known algorithms.
منابع مشابه
Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network
Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملColor and/or Texture Segmentation Using Deterministic Relaxation and Fast Marching Algorithms
The segmentation of colored texture images is considered. Either luminance, color, and/or texture features could be used for segmentation. For luminance and color the classes are described using the corresponding empirical probability distributions. The Discrete Wavelet Frames analysis is used for obtaining features of texture patterns. At a first stage, pattern analysis is performed for extrac...
متن کاملPartial Volume Tissue Segmentation using Grey-Level Gradient
A Bayesian probability based tissue segmentation method is presented, which makes use of the grey level information in the images and also the local grey level slope. The grey level distributions are modelled as a combination of Gaussian distributions and triangle-Gaussian convolutions. The local grey level slope distribution is modelled as a linear combination of Rician distributions. The para...
متن کاملP14: Segmentation Brain Tumors of FMRI Images by Gabor Wavelet Transform and Fuzzy Clustering
Today, high mortality rates due to brain tumors require early diagnosis in the early stages to treat and reduce mortality. Therefore, the use of automatic methods will be very useful for accurate examination of tumors. In recent years, the use of FMRI images has been considered for clarity and high quality for the diagnosis of tumor and the exact location of the tumor. In this study, a complete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2005 شماره
صفحات -
تاریخ انتشار 2005